MARK SCHEME for the October/November 2014 series

0610 BIOLOGY

0610/51
Paper 5 (Practical Test), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

Abbreviations used in the Mark Scheme

- ; separates marking points
- / separates alternatives within a marking point
- R reject
- I ignore (mark as if this material was not present)
- A accept (a less than ideal answer which should be marked correct)
- AW
- underline
alternative wording
words underlined must be present
- max indicates the maximum number of marks that can be awarded
- mark independently the second mark may be given even if the first mark is wrong
- A, S, P, L Axes, Size, Plots and Line for graphs
- O, S, D, L Outline, Size, Detail and Label for drawings
- (n)ecf (no) error carried forward
- ()
- ora or reverse argument.
- AVP

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

	same volume $/ 30 \mathrm{~cm}^{3}$ of yeast suspension; keep at same temperature; take measurements for/after 20 min ; dependent variable: measure/check the volume of dough;	$\max 4$	A same volume of dough/add dough to the same level (in syringes) A leave for same time and measure
(d) (i)	$\begin{aligned} & 30 ; \\ & (35-5=30) \end{aligned}$	1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

(ii)	$\begin{aligned} & \text { A - axe } \\ & \text { S - siz } \\ & \text { P- all } \\ & \hline 10 \\ & \hline 1 \\ & \text { L- line } \end{aligned}$	A - axes labelled and scaled evenly; S - size, P - all points plotted accurately $\pm 1 / 2$ small square;	sca accu 30 15	enly $\pm 1 / 2$ 40 30	squ 50 42	60 25	$\begin{array}{r} 70 \\ \hline 2 \end{array}$	4	x-axis: temperature $/{ }^{\circ} \mathrm{C}$ y-axis: average increase in volume $/ \mathrm{cm}^{3}$ I orientation plots to fill half, or more than half, of grid along both axes $\mathrm{P}=0$ if no scale A ecf (d)(i) A ecf of correct plots on an uneven scale if plot average volume and not average increase in volume $=\max 3$ A either best fit or point to point, ruled lines or smooth curve R extrapolation $>1 / 2$ small square \mathbf{R} histogram or bar chart
(iii)	as the temperature increases the (average) increase in volume increases to a peak/up to $50^{\circ} \mathrm{C}$; up to $50^{\circ} \mathrm{C}$ the (average) increase in volume starts slowly, then increases; above $50^{\circ} \mathrm{C}$ the (average increase in) volume slows/increases less/ decreases;							max 2	A trend- as temperature increases, volume increases then decreases $=\max 1$ A non-linear/changes gradient \mathbf{R} volume decreases A ecf for wrong optimum temperature
(iv)	yeast activity increases with temperature up to $50^{\circ} \mathrm{C}$; optimum temperature is $50^{\circ} \mathrm{C}$; (some of) yeast is killed /enzymes become denatured above $50^{\circ} \mathrm{C}$;							max 1	A enzyme activity/metabolism/respiration I volume/growth of yeast \mathbf{R} yeast is denatured/enzyme is killed
								[Total: 20]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

2 (a) (i)	drawing of leaf R (monocot): \mathbf{O} - outline is single clear line (and no shading anywhere); S - drawing occupies at least half of the space provided; D - detail at least mid-rib and 3 veins each side; L - label on midrib;	4	wrong leaf drawn $=\max 3(\mathrm{O}, \mathrm{S}$ and L$)$ occupies at least half of the space provided/ leaf longer than 50 mm \mathbf{R} if drawing touches/extends into printed words minimum 7 lines, central line extends full length of leaf, other veins need not connect to base of midrib/petiole R ruled lines label lines must make contact with midrib
(ii)	measurement recorded for specimen on widest part of leaf; line drawn and measurement for widest part of leaf $\pm 1 \mathrm{~mm}$; mm recorded for at least one measurement;	3	A measurement of leaf length for leaf R and drawing if cm used, allow measurements but no unit mark
(iii)	formula: $\quad \frac{\text { widest part of drawing ; }}{\text { widest part of specimen }}$ calculation: magnification correct from their figures;	2	measurements should be same as in (a)(ii) A ecf for cm measurements A words or figures answer must be whole number

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

$2 \text { (b) (i) }$	shape venation leaf stalk appearance edge	R narrow/thin/AW parallel/straight/AW no petiole shiny / bright/light smooth	S oval/round/wide/AW; netted/branched/ curved/AW; petiole; dull/ dark; irregular/toothed;	max 2	A other differences from Supervisor's Report
(ii)	\mathbf{R} is monocotyledon as has parallel veins/AW;			1	
(c) (i)	temperature; air currents / drafts; light (intensity); leaf surface area;			max 1	
(ii)	method of collecting liquid / water / water vapour; test for water: use (dry) cobalt chloride paper/test (liquid) boiling point/freezing point for water; result: cobalt chloride changes in colour from blue to pink / boiling point $100^{\circ} \mathrm{C} /$ freezing point $0^{\circ} \mathrm{C}$;			3	A e.g. clip paper to leaf, collect water/liquid / water vapour in bag/tube/box A any other anhydrous salt

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	51

(iii)	similarities: (max 2) both leaves lose water/mass; both leaves lose more water at the start/water loss slows with time; actual loss as percentage of leaf mass is almost the same; differences: (max 2) leaf \mathbf{W} loses more water than leaf $\mathbf{V} /$ ora; calculation of data; leaf \mathbf{V} appears to have anomalous result (at $10 / 15 \mathrm{~min}$)/leaf \mathbf{V} increase in mass between 10 and $15 \mathrm{~min} / \mathrm{AW}$; mass leaf \mathbf{V} stops losing mass/stays constant at 50 mins;	max 4	A W loses water at a faster rate than \mathbf{V}. A 65\% loss for \mathbf{V} and 64% loss for \mathbf{W} A leaf \mathbf{W} loses $4.8 \mathrm{~g} /$ leaf \mathbf{V} loses $3.4 \mathrm{~g} / \mathbf{W}$ loses 1.4 g more than \mathbf{V} A At $15 \mathrm{~min} \mathbf{V}$ increases by 1.5 g
		[Total: 20]	

